Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Pflugers Arch ; 476(2): 257-270, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37966547

ABSTRACT

In microglia, changes in intracellular calcium concentration ([Ca2+]i) may regulate process motility, inflammasome activation, and phagocytosis. However, while neurons and astrocytes exhibit frequent spontaneous Ca2+ activity, microglial Ca2+ signals are much rarer and poorly understood. Here, we studied [Ca2+]i changes of microglia in acute brain slices using Fluo-4-loaded cells and mice expressing GCaMP5g in microglia. Spontaneous Ca2+ transients occurred ~ 5 times more frequently in individual microglial processes than in their somata. We assessed whether microglial Ca2+ responses change in Alzheimer's disease (AD) using AppNL-G-F knock-in mice. Proximity to Aß plaques strongly affected microglial Ca2+ activity. Although spontaneous Ca2+ transients were unaffected in microglial processes, they were fivefold more frequent in microglial somata near Aß plaques than in wild-type microglia. Microglia away from Aß plaques in AD mice showed intermediate properties for morphology and Ca2+ responses, partly resembling those of wild-type microglia. By contrast, somatic Ca2+ responses evoked by tissue damage were less intense in microglia near Aß plaques than in wild-type microglia, suggesting different mechanisms underlying spontaneous vs. damage-evoked Ca2+ signals. Finally, as similar processes occur in neurodegeneration and old age, we studied whether ageing affected microglial [Ca2+]i. Somatic damage-evoked Ca2+ responses were greatly reduced in microglia from old mice, as in the AD mice. In contrast to AD, however, old age did not alter the occurrence of spontaneous Ca2+ signals in microglial somata but reduced the rate of events in processes. Thus, we demonstrate distinct compartmentalised Ca2+ activity in microglia from healthy, aged and AD-like brains.


Subject(s)
Alzheimer Disease , Microglia , Mice , Animals , Microglia/metabolism , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Plaque, Amyloid , Brain/metabolism , Disease Models, Animal , Amyloid beta-Protein Precursor/metabolism
2.
Science ; 381(6655): 270-271, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37471547

ABSTRACT

Cardiac dysfunction triggers immune-mediated loss of pineal gland melatonin release.


Subject(s)
Heart Failure , Melatonin , Pineal Gland , Sleep Disorders, Circadian Rhythm , Humans , Heart Failure/physiopathology , Melatonin/metabolism , Pineal Gland/metabolism , Sleep Disorders, Circadian Rhythm/physiopathology
3.
J Physiol ; 601(12): 2263-2272, 2023 06.
Article in English | MEDLINE | ID: mdl-37036208

ABSTRACT

The brain is an energetically demanding tissue which, to function adequately, requires constant fine tuning of its supporting blood flow, and hence energy supply. Whilst blood flow was traditionally believed to be regulated only by vascular smooth muscle cells on arteries and arterioles supplying the brain, recent work has suggested a critical role for capillary pericytes, which are also contractile. This concept has evoked some controversy, especially over the relative contributions of arterioles and capillaries to the control of cerebral blood flow. Here we outline why pericytes are in a privileged position to control cerebral blood flow. First we discuss the evidence, and fundamental equations, which describe how the small starting diameter of capillaries, compared to upstream arterioles, confers a potentially greater control by capillary pericytes than by arterioles over total cerebral vascular resistance. Then we suggest that the faster time frame over which low branch order capillary pericytes dilate in response to local energy demands provides a niche role for pericytes to regulate blood flow compared to slower responding arterioles. Finally, we discuss the role of pericytes in capillary stalling, whereby pericyte contraction appears to facilitate a transient stall of circulating blood cells, exacerbating the effect of pericytes upon cerebral blood flow.


Subject(s)
Brain , Pericytes , Arterioles/physiology , Pericytes/physiology , Brain/blood supply , Capillaries/physiology , Muscle Contraction/physiology
4.
Neuron ; 111(1): 1-2, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36603547

ABSTRACT

Classically, microglia recognize and internalize amyloid-ß (Aß) via it binding to cell surface receptors. In this issue of Neuron, Hu et al.1 report that microglia "feel" and internalize Aß plaques using the stiffness-sensing channel Piezo1. This could allow new approaches to treating Alzheimer's disease.


Subject(s)
Alzheimer Disease , Microglia , Humans , Animals , Mice , Microglia/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Receptors, Cell Surface/metabolism , Emotions , Plaque, Amyloid/metabolism , Disease Models, Animal , Mice, Transgenic , Ion Channels/metabolism
5.
J Cereb Blood Flow Metab ; 43(7): 1142-1152, 2023 07.
Article in English | MEDLINE | ID: mdl-36688515

ABSTRACT

Noradrenaline (NA) release from locus coeruleus axons generates vascular contractile tone in arteriolar smooth muscle and contractile capillary pericytes. This tone allows neuronal activity to evoke vasodilation that increases local cerebral blood flow (CBF). Much of the vascular resistance within the brain is located in capillaries and locus coeruleus axons have NA release sites closer to pericytes than to arterioles. In acute brain slices, NA contracted pericytes but did not raise the pericyte cytoplasmic Ca2+ concentration, while the α1 agonist phenylephrine did not evoke contraction. Blocking α2 adrenergic receptors (α2Rs, which induce contraction by inhibiting cAMP production), greatly reduced the NA-evoked pericyte contraction, whereas stimulating α2Rs using xylazine (a sedative) or clonidine (an anti-hypertensive drug) evoked pericyte contraction. Noradrenaline-evoked pericyte contraction and capillary constriction are thus mediated via α2Rs. Consequently, α2Rs may not only modulate CBF in health and pathological conditions, but also contribute to CBF changes evoked by α2R ligands administered in research, veterinary and clinical settings.


Subject(s)
Locus Coeruleus , Pericytes , Pericytes/metabolism , Locus Coeruleus/metabolism , Capillaries/physiology , Norepinephrine/pharmacology , Norepinephrine/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Axons/metabolism
6.
Brain ; 146(2): 727-738, 2023 02 13.
Article in English | MEDLINE | ID: mdl-35867861

ABSTRACT

The SARS-CoV-2 receptor, ACE2, is found on pericytes, contractile cells enwrapping capillaries that regulate brain, heart and kidney blood flow. ACE2 converts vasoconstricting angiotensin II into vasodilating angiotensin-(1-7). In brain slices from hamster, which has an ACE2 sequence similar to human ACE2, angiotensin II evoked a small pericyte-mediated capillary constriction via AT1 receptors, but evoked a large constriction when the SARS-CoV-2 receptor binding domain (RBD, original Wuhan variant) was present. A mutated non-binding RBD did not potentiate constriction. A similar RBD-potentiated capillary constriction occurred in human cortical slices, and was evoked in hamster brain slices by pseudotyped virions expressing SARS-CoV-2 spike protein. This constriction reflects an RBD-induced decrease in the conversion of angiotensin II to angiotensin-(1-7) mediated by removal of ACE2 from the cell surface membrane and was mimicked by blocking ACE2. The clinically used drug losartan inhibited the RBD-potentiated constriction. Thus, AT1 receptor blockers could be protective in COVID-19 by preventing pericyte-mediated blood flow reductions in the brain, and perhaps the heart and kidney.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , COVID-19/metabolism , Pericytes/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Capillaries , Constriction , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding
7.
J Cereb Blood Flow Metab ; 42(11): 2032-2047, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35786054

ABSTRACT

Oxygen supplementation is regularly prescribed to patients to treat or prevent hypoxia. However, excess oxygenation can lead to reduced cerebral blood flow (CBF) in healthy subjects and worsen the neurological outcome of critically ill patients. Most studies on the vascular effects of hyperoxia focus on arteries but there is no research on the effects on cerebral capillary pericytes, which are major regulators of CBF. Here, we used bright-field imaging of cerebral capillaries and modeling of CBF to show that hyperoxia (95% superfused O2) led to an increase in intracellular calcium level in pericytes and a significant capillary constriction, sufficient to cause an estimated 25% decrease in CBF. Although hyperoxia is reported to cause vascular smooth muscle cell contraction via generation of reactive oxygen species (ROS), endothelin-1 and 20-HETE, we found that increased cytosolic and mitochondrial ROS levels and endothelin release were not involved in the pericyte-mediated capillary constriction. However, a 20-HETE synthesis blocker greatly reduced the hyperoxia-evoked capillary constriction. Our findings establish pericytes as regulators of CBF in hyperoxia and 20-HETE synthesis as an oxygen sensor in CBF regulation. The results also provide a mechanism by which clinically administered oxygen can lead to a worse neurological outcome.


Subject(s)
Hyperoxia , Pericytes , Calcium/metabolism , Capillaries , Cerebrovascular Circulation/physiology , Constriction , Constriction, Pathologic , Endothelin-1/metabolism , Humans , Hyperoxia/metabolism , Oxygen/metabolism , Pericytes/metabolism , Reactive Oxygen Species/metabolism
8.
Curr Biol ; 32(12): R650-R655, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35728547

ABSTRACT

Consider how advantageous it might be to have eyes on our hands, rather than on our faces: depth perception would be improved by the greater distance between the eyes, and it would be easy to look into relatively inaccessible spaces by appropriate movement of the hands. The absence of mammals that use this visual strategy draws attention to constraints on how evolution is able to 'design' the nervous system. Energy use in particular, in this case the large amount of energy that would be needed to send visual information along the ∼106 optic nerve axons over the length of the arms to the brain (instead of along the much shorter optic nerve), imposes significant design constraints on the nervous system.


Subject(s)
Axons , Optic Nerve , Animals , Axons/physiology , Brain , Eye , Mammals , Neurons , Optic Nerve/physiology
9.
Neurophotonics ; 9(3): 031914, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35581998

ABSTRACT

Brain barriers are crucial sites for cerebral energy supply, waste removal, immune cell migration, and solute exchange, all of which maintain an appropriate environment for neuronal activity. At the capillary level, where the largest area of brain-vascular interface occurs, pericytes adjust cerebral blood flow (CBF) by regulating capillary diameter and maintain the blood-brain barrier (BBB) by suppressing endothelial cell (EC) transcytosis and inducing tight junction expression between ECs. Pericytes also limit the infiltration of circulating leukocytes into the brain where resident microglia confine brain injury and provide the first line of defence against invading pathogens. Brain "waste" is cleared across the BBB into the blood, phagocytosed by microglia and astrocytes, or removed by the flow of cerebrospinal fluid (CSF) through perivascular routes-a process driven by respiratory motion and the pulsation of the heart, arteriolar smooth muscle, and possibly pericytes. "Dirty" CSF exits the brain and is probably drained around olfactory nerve rootlets and via the dural meningeal lymphatic vessels and possibly the skull bone marrow. The brain is widely regarded as an immune-privileged organ because it is accessible to few antigen-primed leukocytes. Leukocytes enter the brain via the meninges, the BBB, and the blood-CSF barrier. Advances in genetic and imaging tools have revealed that neurological diseases significantly alter immune-brain barrier interactions in at least three ways: (1) the brain's immune-privileged status is compromised when pericytes are lost or lymphatic vessels are dysregulated; (2) immune cells release vasoactive molecules to regulate CBF, modulate arteriole stiffness, and can plug and eliminate capillaries which impairs CBF and possibly waste clearance; and (3) immune-vascular interactions can make the BBB leaky via multiple mechanisms, thus aggravating the influx of undesirable substances and cells. Here, we review developments in these three areas and briefly discuss potential therapeutic avenues for restoring brain barrier functions.

10.
iScience ; 25(4): 104127, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35434559

ABSTRACT

Astrocytic GLT-1 is the main glutamate transporter involved in glutamate buffering in the brain, pivotal for glutamate removal at excitatory synapses to terminate neurotransmission and for preventing excitotoxicity. We show here that the surface expression and function of GLT-1 can be rapidly modulated through the interaction of its N-terminus with the nonadrenergic imidazoline-1 receptor protein, Nischarin. The phox domain of Nischarin is critical for interaction and internalization of surface GLT-1. Using live super-resolution imaging, we found that glutamate accelerated Nischarin-GLT-1 internalization into endosomal structures. The surface GLT-1 level increased in Nischarin knockout astrocytes, and this correlated with a significant increase in transporter uptake current. In addition, Nischarin knockout in astrocytes is neuroprotective against glutamate excitotoxicity. These data provide new molecular insights into regulation of GLT-1 surface level and function and suggest new drug targets for the treatment of neurological disorders.

11.
Elife ; 112022 03 14.
Article in English | MEDLINE | ID: mdl-35285797

ABSTRACT

Acute kidney injury is common, with ~13 million cases and 1.7 million deaths/year worldwide. A major cause is renal ischaemia, typically following cardiac surgery, renal transplant or severe haemorrhage. We examined the cause of the sustained reduction in renal blood flow ('no-reflow'), which exacerbates kidney injury even after an initial cause of compromised blood supply is removed. Adult male Sprague-Dawley rats, or NG2-dsRed male mice were used in this study. After 60 min kidney ischaemia and 30-60 min reperfusion, renal blood flow remained reduced, especially in the medulla, and kidney tubule damage was detected as Kim-1 expression. Constriction of the medullary descending vasa recta and cortical peritubular capillaries occurred near pericyte somata, and led to capillary blockages, yet glomerular arterioles and perfusion were unaffected, implying that the long-lasting decrease of renal blood flow contributing to kidney damage was generated by pericytes. Blocking Rho kinase to decrease pericyte contractility from the start of reperfusion increased the post-ischaemic diameter of the descending vasa recta capillaries at pericytes, reduced the percentage of capillaries that remained blocked, increased medullary blood flow and reduced kidney injury. Thus, post-ischaemic renal no-reflow, contributing to acute kidney injury, reflects pericytes constricting the descending vasa recta and peritubular capillaries. Pericytes are therefore an important therapeutic target for treating acute kidney injury.


Subject(s)
Acute Kidney Injury , Pericytes , Animals , Capillaries , Constriction , Female , Humans , Ischemia , Kidney , Male , Mice , Pericytes/physiology , Rats , Rats, Sprague-Dawley
12.
J Clin Invest ; 132(9)2022 05 02.
Article in English | MEDLINE | ID: mdl-35316222

ABSTRACT

Pericyte-mediated capillary constriction decreases cerebral blood flow in stroke after an occluded artery is unblocked. The determinants of pericyte tone are poorly understood. We show that a small rise in cytoplasmic Ca2+ concentration ([Ca2+]i) in pericytes activated chloride efflux through the Ca2+-gated anion channel TMEM16A, thus depolarizing the cell and opening voltage-gated calcium channels. This mechanism strongly amplified the pericyte [Ca2+]i rise and capillary constriction evoked by contractile agonists and ischemia. In a rodent stroke model, TMEM16A inhibition slowed the ischemia-evoked pericyte [Ca2+]i rise, capillary constriction, and pericyte death; reduced neutrophil stalling; and improved cerebrovascular reperfusion. Genetic analysis implicated altered TMEM16A expression in poor patient recovery from ischemic stroke. Thus, pericyte TMEM16A is a crucial regulator of cerebral capillary function and a potential therapeutic target for stroke and possibly other disorders of impaired microvascular flow, such as Alzheimer's disease and vascular dementia.


Subject(s)
Pericytes , Stroke , Calcium/metabolism , Cerebrovascular Circulation/genetics , Humans , Ischemia/metabolism , Pericytes/metabolism , Stroke/metabolism
13.
Neurocrit Care ; 36(3): 1027-1043, 2022 06.
Article in English | MEDLINE | ID: mdl-35099713

ABSTRACT

Hyperoxemia commonly occurs in clinical practice and is often left untreated. Many studies have shown increased mortality in patients with hyperoxemia, but data on neurological outcome in these patients are conflicting, despite worsened neurological outcome found in preclinical studies. To investigate the association between hyperoxemia and neurological outcome in adult patients, we performed a systematic review and meta-analysis of observational studies. We searched MEDLINE, Embase, Scopus, Web of Science, Cumulative Index to Nursing and Allied Health Literature, and ClinicalTrials.gov from inception to May 2020 for observational studies correlating arterial oxygen partial pressure (PaO2) with neurological status in adults hospitalized with acute conditions. Studies of chronic pulmonary disease or hyperbaric oxygenation were excluded. Relative risks (RRs) were pooled at the study level by using a random-effects model to compare the risk of poor neurological outcome in patients with hyperoxemia and patients without hyperoxemia. Sensitivity and subgroup analyses and assessments of publication bias and risk of bias were performed. Maximum and mean PaO2 in patients with favorable and unfavorable outcomes were compared using standardized mean difference (SMD). Of 6255 records screened, 32 studies were analyzed. Overall, hyperoxemia was significantly associated with an increased risk of poor neurological outcome (RR 1.13, 95% confidence interval [CI] 1.05-1.23, statistical heterogeneity I2 58.8%, 22 studies). The results were robust across sensitivity analyses. Patients with unfavorable outcome also showed a significantly higher maximum PaO2 (SMD 0.17, 95% CI 0.04-0.30, I2 78.4%, 15 studies) and mean PaO2 (SMD 0.25, 95% CI 0.04-0.45, I2 91.0%, 13 studies). These associations were pronounced in patients with subarachnoid hemorrhage (RR 1.34, 95% CI 1.14-1.56) and ischemic stroke (RR 1.41, 95% CI 1.14-1.74), but not in patients with cardiac arrest, traumatic brain injury, or following cardiopulmonary bypass. Hyperoxemia is associated with poor neurological outcome, especially in patients with subarachnoid hemorrhage and ischemic stroke. Although our study cannot establish causality, PaO2 should be monitored closely because hyperoxemia may be associated with worsened patient outcome and consequently affect the patient's quality of life.


Subject(s)
Ischemic Stroke , Subarachnoid Hemorrhage , Adult , Blood Gas Analysis/methods , Humans , Quality of Life , Subarachnoid Hemorrhage/complications
14.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: mdl-34642249

ABSTRACT

Microglia are the resident immune cells of the central nervous system. They constantly survey the brain parenchyma for redundant synapses, debris, or dying cells, which they remove through phagocytosis. Microglial ramification, motility, and cytokine release are regulated by tonically active THIK-1 K+ channels on the microglial plasma membrane. Here, we examined whether these channels also play a role in phagocytosis. Using pharmacological blockers and THIK-1 knockout (KO) mice, we found that a lack of THIK-1 activity approximately halved both microglial phagocytosis and marker levels for the lysosomes that degrade phagocytically removed material. These changes may reflect a decrease of intracellular [Ca2+]i activity, which was observed when THIK-1 activity was reduced, since buffering [Ca2+]i reduced phagocytosis. Less phagocytosis is expected to result in impaired pruning of synapses. In the hippocampus, mice lacking THIK-1 expression had an increased number of anatomically and electrophysiologically defined glutamatergic synapses during development. This resulted from an increased number of presynaptic terminals, caused by impaired removal by THIK-1 KO microglia. The dependence of synapse number on THIK-1 K+ channels, which control microglial surveillance and phagocytic ability, implies that changes in the THIK-1 expression level in disease states may contribute to altering neural circuit function.


Subject(s)
Microglia/metabolism , Potassium Channels, Tandem Pore Domain/physiology , Synapses/physiology , Animals , Calcium/metabolism , Female , Male , Mice , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Potassium Channels, Tandem Pore Domain/genetics , Rats , Rats, Sprague-Dawley , Synapses/metabolism
15.
Science ; 374(6565): eabh2858, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34648330

ABSTRACT

In the brain's gray matter, astrocytes regulate synapse properties, but their role is unclear for the white matter, where myelinated axons rapidly transmit information between gray matter areas. We found that in rodents, neuronal activity raised the intracellular calcium concentration ([Ca2+]i) in astrocyte processes located near action potential­generating sites in the axon initial segment (AIS) and nodes of Ranvier of myelinated axons. This released adenosine triphosphate, which was converted extracellularly to adenosine and thus, through A2a receptors, activated HCN2-containing cation channels that regulate two aspects of myelinated axon function: excitability of the AIS and speed of action potential propagation. Variations in astrocyte-derived adenosine level between wake and sleep states or during energy deprivation could thus control white matter information flow and neural circuit function.


Subject(s)
Adenosine Triphosphate/metabolism , Astrocytes/physiology , Axons/physiology , Calcium/physiology , Cortical Excitability , Neural Conduction , Action Potentials , Animals , Mice , Mice, Transgenic , Patch-Clamp Techniques , Rats, Sprague-Dawley
16.
Lancet Neurol ; 20(10): 793, 2021 10.
Article in English | MEDLINE | ID: mdl-34536402
17.
Chem Sci ; 12(32): 10901-10918, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34476070

ABSTRACT

Phagocytosis by glial cells is essential to regulate brain function during health and disease. Therapies for Alzheimer's disease (AD) have primarily focused on targeting antibodies to amyloid ß (Aß) or inhibitng enzymes that make it, and while removal of Aß by phagocytosis is protective early in AD it remains poorly understood. Impaired phagocytic function of glial cells during later stages of AD likely contributes to worsened disease outcome, but the underlying mechanisms of how this occurs remain unknown. We have developed a human Aß1-42 analogue (AßpH) that exhibits green fluorescence upon internalization into the acidic organelles of cells but is non-fluorescent at physiological pH. This allowed us to image, for the first time, glial uptake of AßpH in real time in live animals. We find that microglia phagocytose more AßpH than astrocytes in culture, in brain slices and in vivo. AßpH can be used to investigate the phagocytic mechanisms responsible for removing Aß from the extracellular space, and thus could become a useful tool to study Aß clearance at different stages of AD.

18.
Neuropharmacology ; 197: 108727, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34314736

ABSTRACT

As for electronic computation, neural information processing is energetically expensive. This is because information is coded in the brain as membrane voltage changes, which are generated largely by passive ion movements down electrochemical gradients, and these ion movements later need to be reversed by active ATP-dependent ion pumping. This article will review how much of the energetic cost of the brain reflects the activity of glutamatergic synapses, consider the relative amount of energy used pre- and postsynaptically, outline how evolution has energetically optimised synapse function by adjusting the presynaptic release probability and the postsynaptic number of glutamate receptors, and speculate on how energy use by synapses may be sensed and adjusted. This article is part of the special Issue on 'Glutamate Receptors - The Glutamatergic Synapse'.


Subject(s)
Energy Metabolism/physiology , Glutamic Acid/physiology , Synapses/metabolism , Adenosine Triphosphate/metabolism , Animals , Electrophysiological Phenomena , Energy Metabolism/drug effects , Humans
19.
Curr Opin Neurobiol ; 69: 41-50, 2021 08.
Article in English | MEDLINE | ID: mdl-33485189

ABSTRACT

Neural information processing depends critically on the brain's energy supply, which is provided in the form of glucose and oxygen in the blood. Regulation of this supply occurs by smooth muscle and contractile pericytes adjusting the diameter of arterioles and capillaries, respectively. Controversies exist over the relative importance of capillary and arteriolar level control, whether enzymatically generated signals or K+ ions are the dominant controller of cerebral blood flow, and the involvement of capillary endothelial cells. Here, we try to synthesise the relevant recent data into a coherent view of how brain energy supply is controlled and suggest approaches to answering key questions.


Subject(s)
Capillaries , Endothelial Cells , Arterioles , Brain , Pericytes
SELECTION OF CITATIONS
SEARCH DETAIL
...